Pertemuan 10

Sistem Pendukung Keputusan (Decision Support Systems)



- Pendukung Keputusan
- MIS dan DSS
- Kecerdasan Buatan
- Sistem Pakar

A.     Sistem Pendukung Keputusan
          Sistem pendukung keputusan (Inggris: Decision Support Systems disingkat DSS) adalah bagian dari sistem informasi berbasis komputer (termasuk sistem berbasis pengetahuan (manajemen pengetahuan)) yang dipakai untuk mendukung pengambilan keputusan dalam suatu organisasi atau perusahaan.
           Dapat juga dikatakan sebagai sistem komputer yang mengolah data menjadi informasi untuk mengambil keputusan dari masalah semi-terstruktur yang spesifik.
           Menurut Moore and Chang, SPK dapat digambarkan sebagai sistem yang berkemampuan mendukung analisis ad hoc data, dan pemodelan keputusan, berorientasi keputusan, orientasi perencanaan masa depan, dan digunakan pada saat-saat yang tidak biasa.

Tahapan SPK:

  • Definisi masalah
  • Pengumpulan data atau elemen informasi yang relevan
  • pengolahan data menjadi informasi baik dalam bentuk laporan grafik maupun tulisan
  • menentukan alternatif-alternatif solusi (bisa dalam persentase)

Tujuan dari SPK:

  • Membantu menyelesaikan masalah semi-terstruktur
  • Mendukung manajer dalam mengambil keputusan
  • Meningkatkan efektifitas bukan efisiensi pengambilan keputusan
           Dalam pemrosesannya, SPK dapat menggunakan bantuan dari sistem lain seperti Artificial Intelligence, Expert Systems, Fuzzy Logic, dll.

          Informasi yang diperlukan pada tingkat manajemen yang berbeda


           Tingkat Manajemen Pengambilan Keputusan

  • Manajemen Strategis

- Eksekutif mengembangkan tujuan organisasi, strategi, kebijakan, dan tujuan
- Sebagai bagian dari proses perencanaan strategis

  • Manajemen Taktis

- Manajer dan profesional bisnis dalam tim mandiri
- Mengembangkan rencana jangka pendek dan menengah, jadwal dan anggaran
- Tentukan kebijakan, prosedur dan tujuan bisnis untuk subunit mereka

  • Manajemen Operasional

- Manajer atau anggota tim mandiri
- Mengembangkan rencana jangka pendek seperti jadwal produksi mingguan

         Kualitas Informasi
      Informasi produk yang memiliki karakteristik, atribut, atau kualitas membuat informasi yang lebih bernilai.
Informasi memiliki 3 dimensi:
waktu
kadar
bentuk
- Dimensi Waktu (Time) : Informasi harus tersedia pada
Saat dibutuhkan : ketepatan waktu (Timelines)
Saat disediakan : kekinian (Currency)
Seberapa sering : frekuensi (Frequency)
Dalam periode waktu yang lalu, kini, yang akan datang : periode waktu (Time Period)

- Dimensi Isi (Content) : Informasi harus tersedia pada
Bebas kesalahan : keakuratan (Accuracy)
Berkait kebutuhan : relevansi (Relevance)
Semua ada : Kelengkapan (Completeness)
Hanya yang dibutuhkan : ringkas (Conciseness)
Cakupan informasi : Lingkup (Scope)
Mengukur Kinerja : kinerja (Performance)

- Dimensi Bentuk (Form) : Informasi harus tersedia pada
Mudah dipahami : kejelasan (Clarity)
Secara rinci dan ringkas : rinci (Detail)
Urut berdasarkan tertentu : urutan (order)
Bentuk narasi/gambar : presentasi (Presentation)
Bentuk media cetak/visual : media (Media)

           Struktur Keputusan

  • Terstruktur - situasi di mana prosedur yang harus diikuti ketika keputusan diperlukan dapat ditentukan sebelumnya
  • Tidak terstruktur - situasi keputusan di mana tidak mungkin untuk menentukan sebelumnya sebagian besar prosedur keputusan untuk mengikuti
  • Semi terstruktur - prosedur pengambilan keputusan yang dapat ditetapkan sebelumnya, tetapi tidak cukup untuk menghasilkan keputusan yang direkomendasikan pasti
            Komponen DSS

  1. Data Management. Termasuk database, yang mengandung data yang relevan untuk berbagai situasi dan diatur oleh software yang disebut Database Management Systems (DBMS). 
  2. Model Management. Melibatkan model finansial, statistikal, management science, atau berbagai model kuantitatif lainnya, sehingga dapat memberikan ke sistem suatu kemampuan analitis, dan manajemen software yang diperlukan. 
  3. Communication (dialog subsystem). User dapat berkomunikasi dan memberikan perintah pada DSS melalui subsistem ini. Ini berarti menyediakan antarmuka. 
  4. Knowledge Management. Subsistem optional ini dapat mendukung subsistem lain atau bertindak sebagai komponen yang berdiri sendiri. 

 B.       Sistem Informasi Manajemen
            Sistem informasi manajemen (SIM) (bahasa Inggris: management information system, MIS) adalah sistem perencanaan bagian dari pengendalian internal suatu bisnis yang meliputi pemanfaatan manusia, dokumen, teknologi, dan prosedur oleh akuntansi manajemen untuk memecahkan masalah bisnis seperti biaya produk, layanan, atau suatu strategi bisnis. Sistem informasi manajemen dibedakan dengan sistem informasi biasa karena SIM digunakan untuk menganalisis sistem informasi lain yang diterapkan pada aktivitas operasional organisasi. Secara akademis, istilah ini umumnya digunakan untuk merujuk pada kelompok metode manajemen informasi yang bertalian dengan otomasi atau dukungan terhadap pengambilan keputusan manusia, misalnya sistem pendukung keputusan, sistem pakar, dan sistem informasi eksekutif.

           Tujuan Umum
           Menyediakan informasi yang dipergunakan di dalam perhitungan harga pokok jasa, produk, dan tujuan lain yang diinginkan manajemen.
Menyediakan informasi yang dipergunakan dalam perencanaan, pengendalian, pengevaluasian, dan perbaikan berkelanjutan.
          Menyediakan informasi untuk pengambilan keputusan.
Ketiga tujuan tersebut menunjukkan bahwa manajer dan pengguna lainnya perlu memiliki akses ke informasi akuntansi manajemen dan mengetahui bagaimana cara menggunakannya. Informasi akuntansi manajemen dapat membantu mereka mengidentifikasi suatu masalah, menyelesaikan masalah, dan mengevaluasi kinerja (informasi akuntansi dibutuhkan dan dipergunakan dalam semua tahap manajemen, termasuk perencanaan, pengendalian dan pengambilan keputusan).

           Proses Manajemen
           Proses manajemen didefinisikan sebagai aktivitas-aktivitas:
Perencanaan, formulasi terinci untuk mencapai suatu tujuan akhir tertentu adalah aktivitas manajemen yang disebut perencanaan. Oleh karenanya, perencanaan mensyaratkan penetapan tujuan dan identifikasi metode untuk mencapai tujuan tersebut.
            Pengendalian, perencanaan hanyalah setengah dari peretempuran. Setelah suatu rencana dibuat, rencana tersebut harus diimplementasikan, dan manajer serta pekerja harus memonitor pelaksanaannya untuk memastikan rencana tersebut berjalan sebagaimana mestinya. Aktivitas manajerial untuk memonitor pelaksanaan rencana dan melakukan tindakan korektif sesuai kebutuhan, disebut kebutuhan.
            Pengambilan Keputusan, proses pemilihan di antara berbagai alternative disebut dengan proses pengambilan keputusan. Fungsi manajerial ini merupakan jalinan antara perencanaan dan pengendalian. Manajer harus memilih di antara beberapa tujuan dan metode untuk melaksanakan tujuan yang dipilih. Hanya satu dari beberapa rencana yang dapat dipilih. Komentar serupa dapat dibuat berkenaan dengan fungsi pengendalian.

C.      Kecerdasan buatan
           Kecerdasan Buatan (bahasa Inggris: Artificial Intelligence atau AI) didefinisikan sebagai kecerdasan entitas ilmiah. Sistem seperti ini umumnya dianggap komputer. Kecerdasan diciptakan dan dimasukkan ke dalam suatu mesin (komputer) agar dapat melakukan pekerjaan seperti yang dapat dilakukan manusia. Beberapa macam bidang yang menggunakan kecerdasan buatan antara lain sistem pakar, permainan komputer (games), logika fuzzy, jaringan syaraf tiruan dan robotika.
           Banyak hal yang kelihatannya sulit untuk kecerdasan manusia, tetapi untuk Informatika relatif tidak bermasalah. Seperti contoh: mentransformasikan persamaan, menyelesaikan persamaan integral, membuat permainan catur atau Backgammon. Di sisi lain, hal yang bagi manusia kelihatannya menuntut sedikit kecerdasan, sampai sekarang masih sulit untuk direalisasikan dalam Informatika. Seperti contoh: Pengenalan Obyek/Muka, bermain sepak bola.
           Walaupun AI memiliki konotasi fiksi ilmiah yang kuat, AI membentuk cabang yang sangat penting pada ilmu komputer, berhubungan dengan perilaku, pembelajaran dan adaptasi yang cerdas dalam sebuah mesin. Penelitian dalam AI menyangkut pembuatan mesin untuk mengotomatisasikan tugas-tugas yang membutuhkan perilaku cerdas. Termasuk contohnya adalah pengendalian, perencanaan dan penjadwalan, kemampuan untuk menjawab diagnosa dan pertanyaan pelanggan, serta pengenalan tulisan tangan, suara dan wajah. Hal-hal seperti itu telah menjadi disiplin ilmu tersendiri, yang memusatkan perhatian pada penyediaan solusi masalah kehidupan yang nyata. Sistem AI sekarang ini sering digunakan dalam bidang ekonomi, obat-obatan, teknik dan militer, seperti yang telah dibangun dalam beberapa aplikasi perangkat lunak komputer rumah dan video game.
'Kecerdasan buatan' ini bukan hanya ingin mengerti apa itu sistem kecerdasan, tapi juga mengkonstruksinya.
Tidak ada definisi yang memuaskan untuk 'kecerdasan':
- kecerdasan: kemampuan untuk memperoleh pengetahuan dan menggunakannya
- atau kecerdasan yaitu apa yang diukur oleh sebuah 'Test Kecerdasan'

           Paham Pemikiran

          Secara garis besar, AI terbagi ke dalam dua faham pemikiran yaitu AI Konvensional dan Kecerdasan Komputasional (CI, Computational Intelligence). AI konvensional kebanyakan melibatkan metoda-metoda yang sekarang diklasifiksikan sebagai pembelajaran mesin, yang ditandai dengan formalisme dan analisis statistik. Dikenal juga sebagai AI simbolis, AI logis, AI murni dan AI cara lama (GOFAI, Good Old Fashioned Artificial Intelligence). Metoda-metodanya meliputi:

  • Sistem pakar: menerapkan kapabilitas pertimbangan untuk mencapai kesimpulan. Sebuah sistem pakar dapat memproses sejumlah besar informasi yang diketahui dan menyediakan kesimpulan-kesimpulan berdasarkan pada informasi-informasi tersebut.
  • Petimbangan berdasar kasus
  • Jaringan Bayesian
  • AI berdasar tingkah laku: metoda modular pada pembentukan sistem AI secara manual

           Kecerdasan komputasional melibatkan pengembangan atau pembelajaran iteratif (misalnya penalaan parameter seperti dalam sistem koneksionis. Pembelajaran ini berdasarkan pada data empiris dan diasosiasikan dengan AI non-simbolis, AI yang tak teratur dan perhitungan lunak. Metoda-metoda pokoknya meliputi:

  • Jaringan Syaraf: sistem dengan kemampuan pengenalan pola yang sangat kuat
  • Sistem Fuzzy: teknik-teknik untuk pertimbangan di bawah ketidakpastian, telah digunakan secara meluas dalam industri modern dan sistem kendali produk konsumen.
  • Komputasi Evolusioner: menerapkan konsep-konsep yang terinspirasi secara biologis seperti populasi, mutasi dan “survival of the fittest” untuk menghasilkan pemecahan masalah yang lebih baik.

            Metoda-metoda ini terutama dibagi menjadi algoritma evolusioner (misalnya algoritma genetik) dan kecerdasan berkelompok (misalnya algoritma semut)
Dengan sistem cerdas hibrid, percobaan-percobaan dibuat untuk menggabungkan kedua kelompok ini. Aturan inferensi pakar dapat dibangkitkan melalui jaringan syaraf atau aturan produksi dari pembelajaran statistik seperti dalam ACT-R. Sebuah pendekatan baru yang menjanjikan disebutkan bahwa penguatan kecerdasan mencoba untuk mencapai kecerdasan buatan dalam proses pengembangan evolusioner sebagai efek samping dari penguatan kecerdasan manusia melalui teknologi.
MRK

            Sejarah kecerdasan buatan

             Pada awal abad 17, René Descartes mengemukakan bahwa tubuh hewan bukanlah apa-apa melainkan hanya mesin-mesin yang rumit. Blaise Pascal menciptakan mesin penghitung digital mekanis pertama pada 1642. Pada 19, Charles Babbage dan Ada Lovelace bekerja pada mesin penghitung mekanis yang dapat diprogram.
             Bertrand Russell dan Alfred North Whitehead menerbitkan Principia Mathematica, yang merombak logika formal. Warren McCulloch dan Walter Pitts menerbitkan "Kalkulus Logis Gagasan yang tetap ada dalam Aktivitas " pada 1943 yang meletakkan pondasi untuk jaringan syaraf.
Tahun 1950-an adalah periode usaha aktif dalam AI. Program AI pertama yang bekerja ditulis pada 1951 untuk menjalankan mesin Ferranti Mark I di University of Manchester (UK): sebuah program permainan naskah yang ditulis oleh Christopher Strachey dan program permainan catur yang ditulis oleh Dietrich Prinz. John McCarthy membuat istilah "kecerdasan buatan " pada konferensi pertama yang disediakan untuk pokok persoalan ini, pada 1956. Dia juga menemukan bahasa pemrograman Lisp. Alan Turing memperkenalkan "Turing test" sebagai sebuah cara untuk mengoperasionalkan test perilaku cerdas. Joseph Weizenbaum membangun ELIZA, sebuah chatterbot yang menerapkan psikoterapi Rogerian.
             Selama tahun 1960-an dan 1970-an, Joel Moses mendemonstrasikan kekuatan pertimbangan simbolis untuk mengintegrasikan masalah di dalam program Macsyma, program berbasis pengetahuan yang sukses pertama kali dalam bidang matematika. Marvin Minsky dan Seymour Papert menerbitkan Perceptrons, yang mendemostrasikan batas jaringan syaraf sederhana dan Alain Colmerauer mengembangkan bahasa komputer Prolog. Ted Shortliffe mendemonstrasikan kekuatan sistem berbasis aturan untuk representasi pengetahuan dan inferensi dalam diagnosa dan terapi medis yang kadangkala disebut sebagai sistem pakar pertama. Hans Moravec mengembangkan kendaraan terkendali komputer pertama untuk mengatasi jalan berintang yang kusut secara mandiri.
             Pada tahun 1980-an, jaringan syaraf digunakan secara meluas dengan algoritma perambatan balik, pertama kali diterangkan oleh Paul John Werbos pada 1974. Tahun 1990-an ditandai perolehan besar dalam berbagai bidang AI dan demonstrasi berbagai macam aplikasi. Lebih khusus Deep Blue, sebuah komputer permainan catur, mengalahkan Garry Kasparov dalam sebuah pertandingan 6 game yang terkenal pada tahun 1997. DARPA menyatakan bahwa biaya yang disimpan melalui penerapan metode AI untuk unit penjadwalan dalam Perang Teluk pertama telah mengganti seluruh investasi dalam penelitian AI sejak tahun 1950 pada pemerintah AS.
              Tantangan Hebat DARPA, yang dimulai pada 2004 dan berlanjut hingga hari ini, adalah sebuah pacuan untuk hadiah $2 juta dimana kendaraan dikemudikan sendiri tanpa komunikasi dengan manusia, menggunakan GPS, komputer dan susunan sensor yang canggih, melintasi beberapa ratus mil daerah gurun yang menantang.

            Filosofi

            Perdebatan tentang AI yang kuat dengan AI yang lemah masih menjadi topik hangat di antara filosof AI. Hal ini melibatkan filsafat pemikiran dan masalah pikiran-tubuh. Roger Penrose dalam bukunya The Emperor's New Mind dan John Searle dengan eksperimen pemikiran "ruang China" berargumen bahwa kesadaran sejati tidak dapat dicapai oleh sistem logis formal, sementara Douglas Hofstadter dalam Gödel, Escher, Bach dan Daniel Dennett dalam Consciousness Explained memperlihatkan dukungannya atas fungsionalisme. Dalam pendapat banyak pendukung AI yang kuat, kesadaran buatan dianggap sebagai urat suci (holy grail) kecerdasan buatan.

            Fiksi Sains

            Dalam fiksi sains, AI umumnya dilukiskan sebagai kekuatan masa depan yang akan mencoba menggulingkan otoritas manusia seperti dalam HAL 9000, Skynet, Colossus and The Matrix atau sebagai penyerupaan manusia untuk memberikan layanan seperti C-3PO, Data, the Bicentennial Man, the Mechas dalam A.I. atau Sonny dalam I, Robot. Sifat dominasi dunia AI yang tak dapat dielakkan, kadang-kadang disebut "the Singularity", juga dibantah oleh beberapa penulis sains seperti Isaac Asimov, Vernor Vinge dan Kevin Warwick. Dalam pekerjaan seperti manga Ghost in the Shell-nya orang Jepang, keberadaan mesin cerdas mempersoalkan definisi hidup sebagai organisme lebih dari sekedar kategori entitas mandiri yang lebih luas, membangun konsep kecerdasan sistemik yang bergagasan. Lihat daftar komputer fiksional (list of fictional computers) dan daftar robot dan android fiksional (list of fictional robots and androids).
          Seri televisi BBC Blake's 7 menonjolkan sejumlah komputer cerdas, termasuk Zen (Blake's 7), komputer kontrol pesawat bintang Liberator (Blake's 7); Orac, superkomputer lanjut tingkat tinggi dalam kotak perspex portabel yang mempunyai kemampuan memikirkan dan bahkan memprediksikan masa depan; dan Slave, komputer pada pesawat bintang Scorpio.

D.       Sistem Pakar
           Sistem pakar (dalam bahasa Inggris :expert system) adalah sistem informasi yang berisi dengan pengetahuan dari pakar sehingga dapat digunakan untuk konsultasi. Pengetahuan dari pakar didalam sistem ini digunakan sebagi dasar oleh Sistem Pakar untuk menjawab pertanyaan (konsultasi).
Kepakaran (expertise) adalah pengetahuan yang ekstensif dan spesifik yang diperoleh melalui rangkaian pelatihan, membaca, dan pengalaman. Pengetahuan membuat pakar dapat mengambil keputusan secara lebih baik dan lebih cepat daripada non-pakar dalam memecahkan problem yang kompleks. Kepakaran mempunyai sifat berjenjang, pakar top memiliki pengetahuan lebih banyak daripada pakar yunior. Tujuan Sistem Pakar adalah untuk mentransfer kepakaran dari seorang pakar ke komputer, kemudian ke orang lain (yang bukan pakar).
            Sistem pakar adalah suatu program komputer yang mengandung pengetahuan dari satu atau lebih pakar manusia mengenai suatu bidang spesifik. Jenis program ini pertama kali dikembangkan oleh periset kecerdasan buatan pada dasawarsa 1960-an dan 1970-an dan diterapkan secara komersial selama 1980-an. Bentuk umum sistem pakar adalah suatu program yang dibuat berdasarkan suatu set aturan yang menganalisis informasi (biasanya diberikan oleh pengguna suatu sistem) mengenai suatu kelas masalah spesifik serta analisis matematis dari masalah tersebut. Tergantung dari desainnya, sistem pakar juga mampu merekomendasikan suatu rangkaian tindakan pengguna untuk dapat menerapkan koreksi. Sistem ini memanfaatkan kapabilitas penalaran untuk mencapai suatu simpulan.

              Kelebihan Sistem Pakar
 Secara garis besar, banyak manfaat yang dapat diambil dengan adanya sistem pakar, antara lain :

  • Memungkinkan orang awam bisa mengerjakan pekerjaan para ahli.
  • Bisa melakukan proses secara berulang secara otomatis.
  • Menyimpan pengetahuan dan keahlian para pakar.
  • Meningkatkan output dan produktivitas.
  • Meningkatkan kualitas.
  • Mampu mengambil dan melestarikan keahlian para pakar (terutama yang termasuk keahlian langka).
  • Mampu beroperasi dalam lingkungan yang berbahaya.
  • Memiliki kemampuan untuk mengakses pengetahuan.
  • Memiliki reabilitas.
  • Meningkatkan kapabilitas sistem komputer.
  • Memiliki kemampuan untuk bekerja dengan informasi yang tidak lengkap dan mengandung ketidakpastian.
  • Sebagai media pelengkap dalam pelatihan.
  • Meningkatkan kapabilitas dalam penyelesaian masalah.
  • Menghemat waktu dalam pengambilan keputusan

           Kelemahan Sistem Pakar
Di samping memiliki beberapa keuntungan, sistem pakar juga memiliki beberapa kelemahan, antara lain :

  • Biaya yang diperlukan untuk membuat dan memeliharanya relatif mahal karena diperlukan banyak data.
  • Perlu admin khusus yang selalu update informasi dalam bidang yang sesuai dengan sistem pakar.




Referensi/Sumber:
http://id.wikipedia.org/wiki/Sistem_pendukung_keputusan
http://jokorevolution.blogspot.com/2012/11/definisi-informasi-spk-pertemuan-i.html
http://id.wikipedia.org/wiki/Sistem_informasi_manajemen
http://id.wikipedia.org/wiki/Kecerdasan_buatan
http://id.wikipedia.org/wiki/Sistem_pakar


Unknown

Tidak ada komentar:

Posting Komentar

www.lowongankerjababysitter.com www.lowongankerjapembanturumahtangga.com www.lowonganperawatlansia.com www.lowonganperawatlansia.com www.yayasanperawatlansia.com www.penyalurpembanturumahtanggaku.com www.bajubatikmodernku.com www.bestdaytradingstrategyy.com www.paketpernikahanmurahjakarta.com www.paketweddingorganizerjakarta.com www.undanganpernikahanunikmurah.com

Instagram